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Abstract: In the aftermath of an earthquake, the number of occupants within destroyed housing 

is often used to approximate the number of people rendered homeless after the event. While this 

metric can provide rapid situational awareness, more recent research highlights the importance 

of additional factors beyond housing damage within the scope of household displacement (e.g., 

utility disruption, housing tenure, place attachment). This study models three recent earthquakes 

from different geographies (Haiti, Japan, and Nepal) to benchmark housing damage as a driver 

of population displacement against reported values and mobile location data-based estimates. 

The results highlight the promise of risk models to realistically estimate population displacement 

after earthquakes in the emergency phase as compared with official reports, but also indicate a 

large range of uncertainty in the predicted values. Furthermore, purely basing displacement 

estimates on housing damage may limit the ability of models to capture protracted displacement 

compared to more comprehensive models that include other factors influencing population return 

or alternative approaches such as using mobile location data. Although mobile location data offers 

potential to quantify displacement duration, the results of this study indicate further need to 

benchmark and validate such approaches.  

Introduction  
An average of 24 million annual displacements were triggered by disasters between 2008 and 

2018, approximately three times greater than those triggered by conflict and violence (IDMC, 

2019). The number of people displaced annually is likely to increase under ongoing trends, driven 

by poorly managed urban growth in hazard-prone areas and potentially exacerbated by climate 

change. Despite this scale of human impact, most disaster risk assessments have focused on 

economic losses and casualties. More recent studies have aimed to quantify population 

displacement following earthquakes (Grinberger and Felsenstein, 2016; Burton et al., 2019; 

Bhattacharya and Kato, 2021; Costa, Haukaas and Chang, 2022), identifying a range of 

influencing factors. Numerous potential determinants of population displacement have been 

identified (e.g., homeownership, place attachment, utility disruption); yet, standard practice is 

simply to multiply the number of destroyed (i.e., uninhabitable) housing units by the average 

household size. Regardless of the selected risk metric, an issue that plagues disaster risk 

assessment is the need for more benchmarking or validation studies to ensure that risk models 

reasonably predict observed values. This study aims to benchmark the standard practice of using 

housing destruction as a driver of displacement against official statistics and alternative estimates 

using mobile location data, allowing us to understand the prediction potential and uncertainty 

range of this simplified approach.  
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Approaches to quantifying population displacement  

Defining population displacement  

Past researchers have highlighted a lack of consistent terminology regarding population 

displacement in the disaster context (e.g., Mitchell, Esnard and Sapat, 2012; Esnard and Sapat,  

2014; Greer, 2015), which has complicated efforts to quantify and interpret displacement metrics. 

The Internal Displacement Monitoring Centre (IDMC) defines displacement as “involuntary or 

forced movements… of individuals or groups of people from their habitual places of residence” 

that can be triggered by disasters or other causes such as conflict and violence or development  

  
projects (IDMC, 2020). As a part of their Global Internal Displacement Database (GIDD) initiative, 

the IDMC gathers information on metrics associated with displacement after disaster events, 

including evacuations (i.e., people leaving their habitual residence in advance of or during the 

onset of a hazard), sheltered populations (i.e., people accommodated in shelters or relief camps 

provided by national authorities or other organizations), and the population rendered homeless 

(i.e., due to housing destruction; IDMC, no date). As discussed in IDMC (2018), evacuation 

estimates are based on the population covered by mandatory evacuation orders and/or the 

population in shelters. In contrast, estimates of the homeless population are primarily based on 

housing destruction estimates, typically multiplied by the average household size. This metric is 

most similar to the majority of past attempts to quantify displacement (or “dislocation”; Lin, 2009) 

within the earthquake engineering discipline; that is, damage incurred by an earthquake render 

dwellings uninhabitable, thereby displacing residents.  

Although physical damage to housing has often been considered a primary driver of initial 

displacement (i.e., in the emergency phases), more recent studies have highlighted the 

importance of additional factors beyond housing damage (e.g., Henry, 2013; Costa, Haukaas and 

Chang, 2022). In particular, household decisions to permanently (and voluntarily) relocate (i.e., 

resettle) after disasters may be affected by factors such as place attachment (e.g., Costa, Wang 

and Baker, 2022), social networks or social capital (e.g., Nejat and Damnjanovic, 2012; Nejat, 

Cong and Liang, 2016; Lee, Sugiura and Gečienė, 2017), and home ownership (e.g., Kim and 

Oh, 2014; Mayer et al., 2020). Despite the importance of population return, the benchmarking 

study presented in this paper is limited to initial displacement estimates, which may inform shelter 

needs in the emergency phase.  

Approaches to quantifying population displacement  

It is difficult to get reliable estimates of population movements following disaster events. 

Households that evacuate or dislocate may stay with family and friends, stay in hotels or rentals, 

remain outdoors (e.g., in tents or their car), or may seek public shelter. While headcounts of 

sheltered populations can be relatively straightforward, evidence from past events indicates that 

only a small subset of the displaced population seeks public shelters (Quarantelli, 1982), and data 

regarding those that seek accommodation elsewhere is difficult to ascertain. As such, a variety of 

approaches have been undertaken to estimate population displacement following disasters:  

• Based on housing destruction estimates: Reported or modelled estimates of housing 

destruction are multiplied by the household size to determine the population rendered 

homeless. This is the standard practice used by the IDMC to determine many of its 

displacement estimates (IDMC, 2018).   

• Based on household surveys: A sample of households that habitually resided in an affected 

area can be surveyed to understand the proportion that continues to be away from home, 

ever evacuated, or ever sought public shelter. However, it can be challenging to contact 

displaced populations. As an example of this approach, Kolbe et al. (2010) estimated that 

1,269,110 people were still displaced 1-2 months after the 2010 Haiti earthquake, and 

79,213 people sought shelter.  

• Manual counting of movements: Population movements can be estimated by tracking data 

such as bus and ship movements out of an affected area, as the Haitian National Civil 

Protection Agency (NPCA) performed following the 2010 Haiti earthquake. According to 

their estimates, 511,405 people left Port-au-Prince about three weeks after the earthquake 

(Bengtsson et al., 2011).   

• Mobile location data-based estimates: Call detail records (CDRs) or smartphone GPS 

location data can be used to track population movements following disaster events (Yabe 

et al., 2022). For example, Bengtsson et al. (2011) used CDRs to estimate that 580,000 

people left Port-au-Prince about three weeks after the 2010 Haiti earthquake.  
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In this study, a model-based approach using housing destruction estimates is benchmarked 

against other available estimates for recent earthquake events. For the considered events, only 

estimates based on reported housing destruction estimates (from official statistics or IDMC) and 

estimates from mobile location data (from the literature) were available. While the model-based 

estimates in this study follow the same underlying assumption as the reported figures from official 

statistics or the IDMC (i.e., based on housing destruction), the housing damage is simulated 

based on the earthquake rupture characteristics, resulting ground shaking local intensity 

estimates, and any available seismic station data rather than assumed from official reports. 

Additionally, the distribution of occupants is more refined (i.e., different building types have 

different numbers of occupants rather than using a single average household size). As such, the 

results from the benchmarking study allow us to evaluate the prediction potential and uncertainty 

range of earthquake risk models. Such models might be used to assess disaster risk potential in 

terms of population displacement (together with other risk metrics) for future events and evaluate 

the cost-benefit of potential mitigation strategies.  

Past earthquake scenario risk models  

Selected scenarios  

Three recent earthquakes were selected for study, as summarized in Table 1. These events were 

selected based on the following criteria:  

• Recency: The exposure model used herein is representative of the year 2021. Therefore, 

the modelled populations may not represent past decades, particularly if there has been 

significant population growth or decline in recent years.   

• Availability of mobile location data-based estimates: Many approaches to estimating 

population displacement assume housing destruction as the primary driver; thus, studies 

using mobile location data were targeted to include an estimate that is not reliant on the 

same assumption.  

• Geographic coverage: The events were selected to cover a range of geographic locations, 

which entail different tectonic regions, standard construction practices (and associated 

physical vulnerability of the building stock), and levels of data availability.   

  

Earthquake   Date  Country  

2021 MW7.2 Nippes  2021 August 14  Haiti  

2016 MW7.0 Kumamoto  2016 April 16  Japan  

2015 MW7.8 Gorkha  2015 April 25  Nepal  

Table 1. Selected earthquake scenarios for the benchmarking study.  

Data collection and input models  

Two primary data sources were used to derive the scenario risk models discussed herein, both 

courtesy of the Global Earthquake Model (GEM) Foundation. These data sources are described 

further in this section.  

The GEM Earthquake Scenario Database (ESD) is an ongoing initiative within the GEM 

Foundation to collect information about past earthquake events, including ground shaking from 

seismic stations and macroseismic intensity estimates, rupture model definitions (i.e., magnitude, 

geometry, mechanism), candidate ground motion models (GMMs), and impact data (e.g., reported 

deaths, injuries, damages). This repository is available online at: 

https://github.com/gem/earthquake-scenarios. For this study, ground shaking estimates from 

seismic stations, rupture model definitions, and candidate GMMs were taken from this repository 

to develop the hazard model component. Table 2 presents a summary of the primary sources of 

data used. Although multiple rupture models and candidate GMMs are available in the GEM ESD, 

a single combination was chosen for each earthquake scenario based on the consistency of the 

simulated ground motion fields with the observations from seismic stations. Additionally, the soil 

conditions (i.e., shear wave velocity in the upper 30 meters; VS,30) at each site were derived using 

the global hybrid VS,30 map from the United States Geological Survey (Heath et al., 2020).  

  

Earthquake   Seismic stations  Rupture model  Selected GMM  

2021 MW7.2 Nippes  USGS1 (us6000f65h)  USGS finite fault 

model (us6000f65h)  

Akkar,  

Sandıkkaya and  
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Bommer, (2014)  

2016 MW7.0 Kumamoto  USGS1 (us20005iis)  

NIED2  

USGS fault rupture 

model (us20005iis)  

Chiou  and  

Youngs, (2014)  

2015 MW7.8 Gorkha  USGS1 (us20002926) 
CESMD3  

Bhattarai et al. (2015)  

Hayes et al., (2015)  Atkinson  and  

Boore, (2003)  

Table 2. Summary of key inputs to the scenario hazard model component.   

This benchmarking study also used model components from GEM’s current Global Risk Model 

(Silva et al., 2020). In particular, the residential exposure models for Haiti, Japan, and Nepal from 

the Global Exposure Model (Yepes-Estrada et al., 2023) and the structural fragility functions from 

the Global Vulnerability Model (Martins and Silva, 2021) were directly used. The exposure models 

include building counts, the number of occupants, and building typologies, which are based 

primarily on national statistics but are further adjusted to represent the year 2021 (i.e., to account 

for population growth or decline in each administrative area). The structural fragility models are 

defined for each building class within the exposure model for four different damage states: slight, 

moderate, extensive, and complete damage. Further documentation on the fragility derivation 

process can be found at: https://docs.openquake.org/vulnerability/. For this benchmarking study, 

it was assumed that all occupants within extensively and completely damaged buildings would be 

rendered homeless. That is, dwellings in the extensive or complete damage state were assumed 

to be “uninhabitable,” thereby displacing their occupants.  

Scenario risk analysis methodology  

The scenario risk analyses were performed using the OpenQuake Engine (OQ; Silva et al., 2014), 

an open-source seismic hazard and risk analysis software. Recently, the scenario calculator 

within OQ has been extended to condition ground motion fields using data from seismic stations 

following the procedure proposed in Appendix B by Engler et al. (2022). For this study, 1,000 

Monte Carlo samples of cross-spatially correlated ground motions conditioned on available 

seismic station data were generated for each event. For each simulated ground motion field, a 

damage state is sampled for each asset in the exposure model using the associated fragility 

curves for that asset (based on the building typology) and the corresponding ground motion 

intensity measure (from the simulated ground motion field). The realized damage state for each 

asset in each realization is then directly mapped to the displacement consequence (i.e., 100% 

displaced in the complete and extensive damage state, 0% otherwise) and multiplied by the 

number of occupants in that asset.  

Benchmarking results  

Selected metrics for comparison  

The metrics for this benchmarking study include housing damage counts, housing destruction 

counts, and multiple displacement figures (i.e., sheltered population, population rendered 

homeless, and the number of evacuations).  

As discussed above, four damage states are included in the OQ scenario models (i.e., slight, 

moderate, extensive, and complete). However, different entities may define damage states 

differently. For example, the Japanese Cabinet Office identifies the following building damage 

states: partially damaged (一部破損), partially destroyed (半壊), and completely destroyed (全壊 

). To facilitate comparison, the different reported damage states were summed into the categories 

“damaged” and “destroyed,” where destroyed dwellings are considered uninhabitable and 

damaged buildings suffered some damage (but are not destroyed). The assumed mapping is 

shown in Table 3.  

  

Country  Source  Damaged housing  Destroyed housing  

All  This study (OQ)  Slight  

Moderate  

Extensive Complete  

Haiti  Caribbean Disaster  

Emergency  

Management  

Agency (2021)  

Damaged  Destroyed  
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Japan  Japan Cabinet Office 

(2017)  
Partially damaged (一部破損)  Partially destroyed (半壊)  

Completely destroyed (全壊)  

Nepal  International Centre 
for Integrated  
Mountain  

Development (2015)  

Partially damaged  Fully damaged  

Table 3. Mapping of reported damage states to aggregate housing damage and destruction.  

Similarly, different sources report displacement figures using a different basis for the metric (i.e., 

rendered homeless, sheltered, evacuated). Unlike damage, it is not realistic to sum the various 

metrics to get an aggregate metric, as there may be considerable overlap between individuals 

who evacuate, are rendered homeless, or are accommodated in shelters. Thus, the maximum 

estimate is used if a source reports multiple metrics.  

The criteria used to estimate displacement can also vary for mobile location data-based 

displacement estimates, which is summarized in Table 4 for the referenced studies.  

  

Country  Source  Criteria for displacement  

Haiti  FlowMinder (2021)  “moved from their pre-earthquake usual locations” within the 

Grand’Anse, Sud, and Nippes departments during the first 

week after the earthquake  

Japan  Yabe et al. (2020)  “the rate of affected users who stayed outside their home 

[shichoson (cities/wards)] out of all affected users on that 

day” on the day of the earthquake  

Nepal  Wilson et al. (2016)  “people above normal levels had left the [Kathmandu] valley” 

in the first three weeks after the earthquake  

Table 4. Criteria used to estimate displacement based on mobile location data.  

Haiti’s 2021 MW 7.2 Nippes earthquake  

A comparison of the results for the 2021 Nippes earthquake is shown in Table 5 and Figure 1. For 

this event, the scenario model predicted similar average damage estimates (and therefore similar 

average displacement estimates) to official reports and the IDMC. In contrast, the mobile location 

data-based estimate predicted approximately half the number of displacements. Notably, the 

criteria used for the mobile location data-based estimate was described as “moved from their pre-

earthquake usual locations” in the first week after the earthquake. However, the spatial resolution 

used in their assessment was unspecified; therefore, it is possible that a significant population 

remained near their usual location but remained outside their habitual residence (e.g., stayed 

outside or in a tent due to fear of aftershocks). Additionally, the mobile location data-based 

estimates assume that movement of the sample population (i.e., with SIM cards) is representative 

of the overall population, which may not be the case if phone ownership and/or the damage 

experienced is not uniform across population subgroups. Although all estimates are within the 

modelled distribution, the range of values is significant (~100,000 to ~350,000 displaced).  
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Table 5. Comparison of results for the 2021 MW7.2 Nippes earthquake in Haiti;  “n. 

r.” indicates the value was not reported in that source.  

  

Figure 1. The modelled distribution of population displaced in this study (OQ) relative to other 

benchmarks for the 2021 MW7.2 Nippes earthquake in Haiti.  

Japan’s 2016 MW 7.0 Kumamoto earthquake  

The comparison of results for the 2016 Kumamoto earthquake is shown in Table 6 and Figure 2. 

For this event, the scenario model again predicted similar average damage and displacement 

estimates to the reported data. However, there was a notable discrepancy between the average 

buildings estimated in complete damage in OQ and reported as completely destroyed by the 

official statistics. The Japan Cabinet Office reports standard statistics after earthquake events, 

including the number sheltered and the number under evacuation orders. Interestingly, the 

number sheltered in this earthquake greatly exceeds those under evacuation orders or advisories. 

This contradicts findings from disasters in the United States, whereby residents who evacuate 

seek public shelter only as a last resort (Quarantelli, 1982). In this case, the mobile location 

databased estimate exceeds the modelled and reported estimates but is of a similar magnitude. 

All estimates are well within the range of the modelled distribution. The range of values predicted 

by the model (~100,000 to ~300,000) has a similar but slightly smaller range than in the 2021 

Nippes earthquake in Haiti.   
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*The displacement estimates in Yabe et al., (2020) are reported as rates (25.5% on the day of the earthquake); to 
convert the rate into an absolute value, the rate is multiplied by the estimated population in the 33 affected districts 
considered within that study.  

Table 6. Comparison of results for the 2016 MW7.0 Kumamoto earthquake in Japan;  “n. 

r.” indicates the value was not reported in that source.  

  

  

Figure 2. The modelled distribution of population displaced in this study (OQ) relative to other 

benchmarks for the 2016 MW7.0 Kumamoto earthquake in Japan.  

Nepal’s 2015 MW 7.8 Gorkha earthquake  

The comparison of results for the 2015 Gorkha earthquake in Nepal is shown in Table 7 and Figure 

3. Although the average estimates of any level of damage (i.e., damaged plus destroyed) are 

similar between the model and the official statistics, the breakdown by severity (i.e., damaged 

versus destroyed) is notably different. For this reason, the average displaced estimates are more 

markedly different than the other two earthquake scenarios. The mobile location data-based 

estimate is significantly lower than the modelled and reported estimates, although this could be 

due to the criteria employed within that study (“people above normal levels had left the 

[Kathmandu] valley” in the first few weeks after the earthquake). Under that criterion, individuals 

that may have left their habitual residence but remained in the Kathmandu Valley would not be 

counted, nor would individuals normally residing outside the Kathmandu Valley in the first place. 

Once again, all estimates lie within the modelled distribution. However, the range of predicted 

values (~800,000 to ~3,000,000) is significant and notably larger than the other two scenarios. 

This is likely due to a combination of the limited number of seismic stations (as compared with  

Japan) to properly condition the ground motion fields and the higher sigma within the selected  

GMM.  
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Table 7. Comparison of results for the 2015 MW7.8 Gorkha earthquake in Nepal;  “n. 

r.” indicates the value was not reported in that source.  

  

Figure 3. The modelled distribution of population displaced in this study (OQ) relative to other 

benchmarks for the 2015 MW7.8 Gorkha earthquake in Nepal.  

Conclusion  
This study compared displacement predictions based on residential damage estimates from 

earthquake risk models against official statistics and mobile location data-based estimates. The 

model results seem promising as they are all broadly consistent with alternative estimates, but 

there is a notable uncertainty range in all considered earthquake scenarios. Additionally, the 

official statistics typically are underpinned by the same fundamental assumption (i.e., housing 

destruction leads to displacement). Thus, a fully independent comparison is not possible to 

validate the models. Additionally, validation is complicated by the use of many different metrics to 

quantify displaced populations (i.e., rendered homeless, sheltered, evacuated).   

The mobile location data-based estimates offer an interesting comparison, but further evaluation 

of the displacement criteria used and the representativeness of the sample population may be 

required. In the case of the Haiti and Nepal earthquakes, the mobile location data-based 

estimates were notably lower than the mobel-based estimates and official reports. In some cases, 

this may be because the considered population was restricted to specific areas (e.g., within the 

Kathmandu Valley) or that there was an insufficient spatial resolution used in the displacement 

criteria (i.e., neglecting those who left their habitual residence but migrated short distances). 

Another issue could be that the movements of the sample population (i.e., those with phones) are 

not fully representative of the affected population (e.g., elderly populations may be less likely to 
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carry phones and may also inhabit older buildings more prone to damage). Although more study 

is needed, mobile location data offers the potential to explicitly capture the space and time 

components of displacement.   

In this study, the housing destruction-based estimates yielded reasonable estimates as compared 

with the official reports. While this is a promising result for rapid estimates using the standard 

practice, some critical factors that influence population displacement and shelter-seeking 

behavior are neglected (e.g., utility disruption, weather). Moreover, quantification of the duration 

of displacement remains a challenge as critical factors influencing population return in the 

recovery phase (e.g., home ownership, place attachment, social networks) are not considered.  

The results from this benchmarking study demonstrate the potential use of disaster risk models 

to evaluate population displacement in the emergency phase, which can be useful for real-time 

predictions to rapidly estimate shelter needs or can help expand the metrics quantified within 

“what-if” scenarios and cost-benefit studies to capture more equitable and people-centered 

metrics beyond economic loss and casualties.  
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