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Abstract: Earthquake early warning (EEW) systems provide brief notice to targeted audiences 

(e.g., civil protection services) of potentially destructive seismic events. This short warning time 

can be used to take rapid but effective actions for reducing impending earthquake-related losses 

(e.g., shutting off gas supplies to prevent fires, evacuating the ground floors of buildings to mitigate 

casualties). Current EEW systems in use around the world do not employ risk-based metrics to 

support decision making for alert triggering by various end users. Instead, thresholds for issuing 

EEW alarms are typically based on seismological parameters (e.g., magnitude, ground-shaking 

intensity value) without regard for the possible consequences of triggering or not the warning.  

Some recent research efforts have focused on  developing risk-informed EEW decision-making 

methodologies, but these have been limited to applications involving single assets (e.g., buildings) 

or specific infrastructure systems, and are not suitable for region-wide EEW.   This paper 

addresses the limitations of state-of-the-art in EEW decision making by developing an end-user- 

and risk-oriented EEW decision support system (EEW DSS) for a building portfolio. The proposed 

EEW DSS combines conventional seismic risk assessment tools with a multi-criteria decision 

algorithm that relies on stakeholder risk preference input, and explicitly integrates necessary 

considerations associated with a region-wide, heterogenous set of buildings (e.g., spatially 

correlated ground motions, varying impacts of triggering or not the alarm for different building 

occupancies, etc.). The EEW DSS is tested for a series of earthquakes across a hypothetical 

urban system (>4,000 buildings). We find that the risk-informed magnitude threshold for alarm 

issuance increases with distance (as expected), and that the optimal action for a given 

magnitude/distance may depend on stakeholder risk preferences (consistent with previous 

studies). The proposed methodology has the potential to convert region-wide EEW systems into 

powerful people-centered loss-mitigation tools.  

Introduction   
Earthquake early warning (EEW) is a pre-earthquake rapid intervention tool developed to avoid 

economic and life losses (Velazquez et al., 2020). The short warning time provided by EEW can 

be used for shutting off gas supplies to prevent fires and evacuating the ground floors of buildings 

to mitigate casualties, for instance (Gasparini et al., 2011). This study focuses on a key stage in 

EEW that involves identifying the optimal action to take (associated with triggering or not an EEW 

alarm/warning) for a detected incoming seismic event.   

Existing EEW research efforts have focused predominantly on its seismological aspects (e.g., 

Cremen and Galasso, 2020; Cremen et al., 2022b). This means that thresholds for alarm issuance 

in current operational EEW systems are typically calibrated exclusively based on nonengineering-

related metrics like magnitude (Velazquez et al., 2020) that do not fully capture the consequences 

of issuing or not a warning, including the implications of unnecessarily raising an alarm for a 

seismic event that does not cause any harm.   While some studies have leveraged earthquake 

engineering theory to create enhanced risk-informed decision-making approaches for EEW (e.g., 

Iervolino, 2011), they have all focused on site-specific EEW applications like individual buildings 

(Cremen and Galasso, 2021) or port systems (Cremen et al., 2022a).    

Our study instead centres on developing an advanced risk- (engineering-) oriented 

decisionsupport system (DSS) for region-wide EEW, which operates across city-sized areas 
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located some distance from the earthquake epicenter (Velazquez et al., 2020). The proposed 

DSS integrates regional seismic risk assessment tools that capture necessary considerations 

associated with a heterogenous set of dispersed buildings (e.g., spatially correlated ground 

motions, varying impacts of triggering or not the alarm for different building occupancies, etc.). 

Furthermore, it incorporates a general multicriteria decision-making (MCDM) methodology that 

accounts for the  

  
relative importance of different consequences to stakeholders, facilitating for the first time an 

enduser-driven, risk-informed decision-making process for region-wide EEW. The proposed DSS 

is demonstrated for the building portfolio of a hypothetical urban system called “Tomorrowville” 

(Mentese et al., 2023). We specifically adopt the current urban layout of Tomorrowville (called 

TV0) as our case study, which consists of 4,810 buildings.   

This paper is structured as follows. The methodology of the proposed EEW DSS is first described. 

It is then applied to TV0, investigating the optimal warning decision for a series of earthquakes 

with increasing magnitude that occur at specific distances from the building portfolio.  The final 

section provides discussion on, and conclusions of, the study.  

Methodology  

Background   

The proposed EEW DSS is a region-wide version of the EEW decision-making methodology for 

individual structural assets introduced by Cremen and Galasso (2021). The aim of the DSS is to 

determine the optimal portfolio-level EEW action to take among a set of risk-mitigation measures 

{𝐴𝑖} associated with triggering an alarm or no action NA (i.e, not triggering the alarm), for a 

detected incoming seismic event with uncertain characteristics. A conceptual outline of the 

proposed methodology is shown in Figure 1. The methodology will now be described in a stepby-

step manner, emphasizing features that deviate from the procedure detailed in Cremen and 

Galasso (2021).     

  

  

Figure 1. Conceptual outline of the proposed EEW methodology.  

Step 1: Develop a consequence matrix  

The purpose of this step is to characterize a prescribed set of portfolio-level consequence/loss 

criteria (e.g., cost, downtime) associated with {𝐴𝑖} and NA, conditional on the uncertain 

characteristics of the incoming earthquake (d). The value of the jth criterion for NA is equivalent 

to the expected value of the consequence 𝐸𝑁𝐴(𝐶𝑗𝑁𝐴|𝒅) derived from a regional risk assessment 

procedure adapted to consider generic uncertainties in the earthquake characteristics, according 

to:   

  𝐸𝑁𝐴(𝐶𝑗𝑁𝐴|𝒅) 

 𝑐𝑗𝑁𝐴𝑓(𝑐𝑗|𝒅𝒎)𝑓(𝒅𝒎|𝒊𝒎) (1)  

= ∭ 𝑓(𝒊𝒎|𝒅)𝑑𝑐𝑗𝑁𝐴𝑑𝒅𝒎𝑑𝒊𝒎  
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𝑁 𝐴 
𝑖 = 1 + 𝐸 𝑁𝐴 

𝑓(𝑎|𝑏)  is the probability density function (pdf) of a conditional on b. dm and im are portfolio-wide 

vector measures of damage level and ground shaking intensities, respectively.  𝑓(𝒅𝒎|𝒊𝒎) is 

obtained using appropriate fragility functions for each building.  𝑓(𝒊𝒎|𝒅) is the multivariate pdf of 

im, given current (uncertain) information on the incoming earthquake. For this first iteration of the 

methodology, we assume that d contains accurate estimates of the magnitude (𝑀∗) and epicentral 

distance (𝑅𝑒𝑝𝑖∗ ) of the incoming event, determined from an idealistic seismological EEW algorithm.  

Thus, 𝑓(𝒊𝒎|𝒅) = 𝑓(𝒊𝒎|𝑀∗, 𝑅𝑒𝑝𝑖∗ ), which can be computed using a ground motion model (GMM) 

supplemented with an appropriate spatial correlation model, for instance.   

The value of the jth criterion for Ai 𝐸𝐴𝑖(𝐶𝑗𝐴𝑖|𝒅) is a combination of the action-specific consequence 

associated with a false alarm 𝐸(𝐶𝑖𝑗𝐹𝐴|𝒅) and the action-, criterion-, and event-specific residual 

amount of  𝐸𝑁𝐴(𝐶𝑗𝑁𝐴|𝒅), denoted as   𝛼𝑖𝑗(𝒅) 𝐸𝑁𝐴(𝐶𝑗𝑁𝐴|𝒅). 𝐸(𝐶𝑖𝑗𝐹𝐴|𝒅) is computed from:  

  𝑁𝑏 

 𝐸(𝐶𝑖𝑗𝐹𝐴|𝒅) = ∑ 𝑐𝑖𝑗𝐹𝐴,𝑘𝑝(𝐹𝐴𝑘|𝒅)  (2)  

𝑘=1 

where Nb is the number of buildings in the portfolio and  𝑐𝑖𝑗𝐹𝐴,𝑘 is the false alarm cost for the kth 

building. 𝑝(𝐹𝐴𝑘|𝒅) is the event-dependent probability of a false alarm (i.e., no damage) occurring 

for the kth building. Each value of  𝐸𝐴𝑖(𝐶𝑗𝐴𝑖|𝒅) and 𝐸𝑁𝐴(𝐶𝑗𝑁𝐴|𝒅) are finally arranged in an (𝑁𝐴 + 

1) × 𝑁𝐶 matrix, as explained in Cremen and Galasso (2021), where  𝑁𝐴 is the number of potential 

risk-mitigation actions and  𝑁𝐶 is the number of considered consequence criteria.   

Step 2: Develop a decision matrix  

This step follows the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) 

approach to multi-criteria decision making (Yoon and Hwang, 1995), first normalizing each i-jth 

entry of the consequence matrix according to:   

𝑟𝐴𝑖,𝐶𝑗 

 =  𝐸𝐴𝑖(𝐶𝑗𝐴𝑖|𝒅)   (3)  

 (𝐶𝑗𝐴𝑖|𝒅) (𝐶𝑗𝑁𝐴|𝒅)2 

Then, the decision matrix is completed by weighting each 𝑟𝐴𝑖,𝐶𝑗 value in line with stakeholder 

preferences towards each criterion {𝑤𝑗} , which can be captured by soliciting pairwise 

comparisons of each criterion according to the analytical hierarchy process (Saaty, 1980), for 

instance. Interested readers are referred to Cremen and Galasso (2021) for more information.   

Step 2: Identify the optimal decision  

This final step determines the appropriate decision to make, conditional on the current information 

available for the incoming earthquake, 𝒅. According to the TOPSIS approach, the smallest and 

largest values of 𝑟𝐴𝑖,𝐶𝑗𝑤𝑗 (including 𝑟𝑁𝐴,𝐶𝑗𝑤𝑗) are first identified for each criterion, which are the best 

(𝑣𝑗+) and worst (𝑣𝑗−) solutions for that criterion, respectively (since the criterion are negative 

consequences). The cumulative distances of Ai and NA from all best and worst solutions are then 

computed according to:  

 𝑦𝑖′ 𝑟𝐴𝑖,𝐶𝑗𝑤𝑗)2   

 (4)  

where 𝑦𝑖′ = 𝑦𝑖+ or 𝑦𝑖− and 𝑣𝑖′ = 𝑣𝑖+ or 𝑣𝑖− accordingly. Finally, the optimal Ai or NA is the one with 

the largest Si (or SNA) value, which is determined according to:   

𝑦𝑖− 

 𝑆𝑖 = 𝑦 − + 𝑦𝑖+   (5)  

=   √   ∑ ( 𝑣 𝑗 
′ − 

𝑁 𝑐 

𝑗 = 1   
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Case study application to a building portfolio  

Case study description  

The proposed EEW DSS methodology is now demonstrated using a hypothetical 2 km × 3km  

virtual urban testbed called “Tomorrowville” (Mentese et al., 2023), which reflects a Global South 

city in terms of its physical and social characteristics. We specifically use the current urban layout 

of Tomorrowville (denoted as TV0), which consists of 4,810 buildings, all with known attributes 

related to earthquake vulnerability (including building occupancy and the number of people who 

use each building at peak times).   

We assume that there is only one EEW-related risk-management option (A1) in this case, which 

is simply to “Trigger the EEW alarm”. The selected consequence criteria are downtime (C1) and 

casualties (C2). We explore the optimal decision among A1 and NA, for a set of discrete 𝑀∗ values 

ranging from 4.0 to 7.5 in intervals of 0.1, and corresponding 𝑅𝑒𝑝𝑖∗ values (measured from the 

centroid of the building portfolio) equal to 10km, 30km, and 50km from ruptures on vertical 

strikeslip faults. We assume that the examined earthquakes occur at 2pm on a weekday.  

Step 1: Develop the consequence matrix   

We generate 𝑓(𝒊𝒎|𝑀∗, 𝑅𝑒𝑝𝑖∗ ) in equation 1 at each building in TV0, using the Boore et al. (2014) 

global GMM with VS30=500 m/s and unknown basin depths, the spatial correlation model proposed 

by Jayaram and Baker (2009) for clustered VS30 values, and 1,000 Monte Carlo simulations of the 

underlying probability distributions for each {𝑀∗, 𝑅𝑒𝑝𝑖∗ } pair (where the earthquake epicenter is 

assumed to be uniformly distributed on the circle with radius 𝑅𝑒𝑝𝑖∗ ). 𝒊𝒎 includes the intensity 

measures used in the fragility function for each TV0 building as detailed in Gentile et al. (2022), 

which are either peak ground acceleration, spectral acceleration at the building’s fundamental 

period, or the geometric mean of spectral acceleration across a range of periods (Kohrangi et al., 

2017).      

In the absence of available recovery time consequence models for TV0 buildings, downtime 

values for each building are based on the damage-dependent building and service interruption 

times provided in Section 11.2.4 of Hazus (FEMA, 2020).  We make the following assumptions to 

map TV0 buildings to Hazus occupancy classes: (1) educational facilities are assigned the “EDU1” 

(schools) class; (2) hospitals are assigned the “COM6” (hospital) class; (3) agricultural buildings 

are classified as “AGR1” (agriculture); (4) one-story residential buildings are assigned the “RES1” 

(single-family dwelling) class; (5) multi-story residential buildings are assigned the “RES3A-F” 

(multi-family dwelling) class; (6) commercial buildings are assigned the “COM4”  

(professional/technical/business services) class; (7) industrial buildings are assigned the “IND2” 

(light industrial) class; and (8) buildings within historical preservation areas are assigned the 

“REL1” (church) class.   

C1 values for the NA option are exactly equivalent to the times derived from Tables 11-8 and 119 

of Hazus. Since these values are deterministic conditional on dm, equation 1 simplifies in this 

case to:   

𝐸𝑁𝐴(𝐶1𝑁𝐴|𝒅) 

 = ∬ 𝐶1𝑁𝐴(𝒅𝒎)𝑓(𝒅𝒎|𝒊𝒎)    (6)  

𝑓(𝒊𝒎|𝒅) 𝑑𝒅𝒎𝑑𝒊𝒎 

where 𝐶1𝑁𝐴(𝒅𝒎) = ∑𝑁𝑏𝑘=1 𝐶1𝑁𝐴,𝑘 (𝑑𝑚𝑘), 𝑑𝑚𝑘 denotes the damage level associated with the kth 

building, 𝐶1𝑁𝐴,𝑘 (𝑑𝑚𝑘) is computed according to the relevant columns of Tables 11-8 and 11-9 in 

Hazus, and all other variables are as previously defined.    

𝛼11(𝒅) is based on engineering judgement, accounting for possible activities that could be 

implemented to reduce business and service interruption time if an EEW alarm is triggered, such 

as: (1) saving significant data; (2) safeguarding valuables; and (3) isolating hazardous chemical 

or biological systems (Allen et al., 2009). 𝛼11(𝒅) depends on the EEW-related mitigation effect for 

each kth individual building 𝛼11,𝑘(𝒅), computed as:   

 𝛼11,𝑘(𝒅) = 𝛼11,𝑘 = 0.9 × 𝛿11,𝑘  (7)  
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This means that the downtime values of all buildings are uniformly decreased by 10% if an EEW 

alarm is triggered correctly, regardless of their damage state. 𝛿11,𝑘 = 1 except in the case of 

commercial, industrial, and hospital buildings, which are respectively assigned 𝛿11,𝑘 = 

0.8, 0.9, and 0.9, to reflect additional downtime mitigation associated with saving data (commercial 

buildings) or avoiding leakages associated with hazardous substances (industrial/hospital 

buildings). Furthermore, we assume that 𝑐11𝐹𝐴,𝑘 = 0.1 day of disruption across all buildings, 

regardless of their occupancy.   

At the time of occurrence of the examined earthquakes, we assume that all workers in TV0 are at 

their workplace, all school-going children are at school, and all other inhabitants of TV0 are at 

their place of residence. Furthermore, we assume that earthquake-induced casualties only occur 

to those who are inside each building, the total number of which is computed using the 

corresponding 0.7, 0.99, 0.9, and 0.9 scaling factors provided in Table 12-2 of Hazus for 

residential, commercial, educational, and industrial buildings respectively (note that agricultural 

buildings are assigned residential occupancies, per Mentese et al., 2023 and Gentile et al., 2022).   

𝐸𝑁𝐴(𝐶2𝑁𝐴|𝒅) is computed in line with equation 6, and 𝐶2𝑁𝐴,𝑘 (𝑑𝑚𝑘) is derived according to:  

 𝐶 𝑁𝐴,𝑘  𝐶𝐿𝑚  × 𝑁𝑜𝑐𝑐,𝑘  (8)  

𝑚  

where 𝐶𝐿𝑚(𝑑𝑚𝑘) is the relevant damage-dependent mth severity-level casualty rate derived from 

Tables 12-3 to 12-5 of Hazus, for damage states less than complete. For the complete damage 

state, 𝐶𝐿𝑚(4)  is the average of the mth severity-level casualty rate values according to Tables 

12-6 and 12-7 of Hazus, weighted in line with the conditional probabilities of collapse provided in 

Table 12-8 of the document. 𝑁𝑜𝑐𝑐,𝑘 is the total number of indoor occupants in the kth building. TV0 

buildings are mapped to Hazus structural types, as follows: (1) adobe, brick in mud, and stone in 

mud buildings are classified as “URML” (low-rise unreinforced masonry bearing walls); (2) brick 

in cement buildings are classified as “RM2L” (low-rise reinforced masonry bearing walls with 

concrete diaphragms); and (3) low-rise and mid-rise reinforced concrete infilled frame buildings 

are respectively classified as  “C3L” and “C3M” (low-rise and mid-rise concrete frame with 

unreinforced masonry infill).   

𝛼12(𝒅) is computed assuming that when an EEW alarm is triggered, non-fatal casualties due to 

collapse are reduced by 40% (in line with Wu et al., 2012) and casualties of all severity levels in 

non-collapse cases are reduced by 50% (in line with Strauss & Allen, 2016). 𝑐12𝐹𝐴,𝑘=0.01 in all 

occupied buildings, assuming a 1% probability of one casualty due to panic per Cremen et al., 

(2022a).   

Step 2: Develop the decision matrix  

The following sets of {𝑤𝑗} values are explored, to illustrate a reasonably broad variety of potential 

stakeholder priorities towards both consequence criteria: (1) 𝑤1 =  𝑤2= 0.5 (i.e., a stakeholder has 

equal preference for both criteria); (2) 𝑤1 =  0.75 and 𝑤2= 0.25 (i.e., a stakeholder prioritizes 

mitigating downtime); and (3) 𝑤1 =   0.25 and 𝑤2= 0.75 (i.e., a stakeholder prioritizes mitigating 

casualties).   

Step 3: Identify the optimal decision   

Figure 2 presents the optimal EEW decisions across the range of   and {𝑤𝑗} values 

considered.  

Results and Discussion   

It can be seen from Figure 2 that the magnitude threshold at which the optimal decision switches 

to issuing an EEW alarm increases with 𝑅𝑒𝑝𝑖   , regardless of the underlying stakeholder risk 
preferences.  This is an intuitive result, arising from a combination of (1): decreasing 𝐸𝑁𝐴(𝐶𝑗𝑁𝐴|𝒅) 

values at farther source-to-site distances, due to smaller ground-motion amplitudes; and (2): 

increasing  𝐸(𝐶𝑖𝑗𝐹𝐴|𝒅) values, due to larger numbers of buildings experiencing no damage. These 

findings emphasise the importance of taking both event magnitude and location into account in a 

regional-level EEW DSS, to prevent potentially costly false alarm losses.   

It is also observed from Figure 2 that stakeholder preferences can affect the optimal decision for 

a given   pair.  We see that the magnitude threshold at which the optimal decision 

switches to issuing an EEW alarm for a given 𝑅𝑒𝑝𝑖  value is highest (i.e., least conservative) for 

the case of stakeholders placing more emphasis on minimising casualties and lowest (most 



SECED 2023 Conference  LIU & CREMEN  

6  

conservative) for the case of stakeholders placing more emphasis on minimising downtime. An 

intermediate magnitude threshold is then obtained for the case of stakeholders placing equal 

emphasis on minimising both loss types.  These findings are reasonable and can be explained by 

discrepancies in the relative differences between 𝐸(𝐶12𝐹𝐴|𝒅) and 𝐸𝑁𝐴(𝐶2𝑁𝐴|𝒅) values and those 

between 𝐸(𝐶11𝐹𝐴|𝒅) and 𝐸𝑁𝐴(𝐶1𝑁𝐴|𝒅). These mean that, at least for the assumptions made in this 

case study application, alarm-related casualty consequences dominate over those expected to 

be induced by the earthquake if no action is taken, for a larger magnitude range than is the case 

for downtime consequences.  These findings, which are in line with those obtained in previous 

studies that have integrated MCDM into decision-making for on-site EEW applications (e.g., 

Cremen and Galasso, 2021; Cremen et al., 2022), underline the importance of the stakeholder 

engagement process in regional-level EEW alarm calibration.     

  

Figure 2. Identifying the optimal EEW decision across three 𝑅𝑒𝑝𝑖∗ - 10km (top left panel), 30km  

(top right panel), and 50km (bottom panel)- and a range of magnitudes associated with a 

potential incoming earthquake.  

Conclusions   
This work has developed and calibrated a state-of-the-art engineering-oriented region-wide EEW 

DSS for application to a city-level building portfolio. The DSS methodology unifies a conventional 

regional seismic risk assessment procedure with multi-criteria decisional tools, determining the 

optimal EEW-related action to take for a detected seismic event based on: (1) objectively 

measured consequences associated with all available actions; and (2) subjective stakeholder 

priorities towards different types of risk.   

The case-study application of the EEW DSS to a set of more than 4,000 buildings in the 

Tomorrowville (TV0) virtual urban testbed clearly illustrated that the optimal EEW risk-mitigation 

action for a given incoming earthquake can greatly rely on stakeholders’ preferences towards 

different types of consequences.  This finding highlights the critical importance of accounting for 

end-user input when identifying alarm thresholds in EEW systems and is in line with the results 

of previous related research (e.g., Cremen & Galasso, 2021). As expected, it was found that the 

magnitude at which an EEW alarm should be triggered in TV0 decreases for closer epicentral 

distances, due to the larger amplitudes of near-source ground motion intensities.      

The results of the study will facilitate better informed end-user EEW decision-making for city-level 

applications. Though the DSS was designed and demonstrated for a specific urban setting, it is 

flexible enough to be implemented within any building portfolio. The proposed algorithms can be 
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packaged as a software plug-in to many operational EEW platforms currently in use, converting 

these platforms into powerful engineering-oriented end-user tools that promote thorough seismic 

risk mitigation. Future work will extend the methodology’s capabilities by explicitly accounting for 

the feasibility of risk-mitigation actions as a function of available lead time and incorporating 

realistic dynamic source-parameter uncertainties in the risk assessment, for instance.    
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