
  

DEVELOPMENT OF A SEISMIC DAMAGE PREDICTION MODEL 
BY USING MACHINE LEARNING ALGORITHMS WITH AN 

ARTIFICIAL DATASET 
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Abstract: The determination of building damage and replacing or retrofitting the risky buildings 
provide to reduce financial loss and the number of casualties before a catastrophic event. 
Evaluating the seismic performance of existing buildings is a laborious process. However, using 
well-trained machine learning prediction models instead of thorough structural performance 
analysis can reduce computational demand. This article presents the development of a damage 
prediction model using machine learning methods from a dataset of reinforced concrete moment-
resisting 2-D bare frame systems. The characteristics of representative buildings are obtained 
from the literature survey about building stock characteristics of the Marmara region. 
OpenSeesPy framework is employed for the parametric non-linear time history analysis of 
structures under actual seismic recordings. The selected seismic recordings are taken into 
account according to different intensity measures. The Maximum Inter-Story Drift Ratio (MIDR) 
has been used to classify the damage level of the buildings. Trials are conducted on four 
classification-related algorithms, including decision tree, k-nearest neighbors, support vector 
machine, and random forest. As a result of comparing the performance of these algorithms, the 
random forest algorithm outperformed.  

Introduction 

It is essential to ensure that buildings do not exceed the designated damage level, when an 
earthquake occurs. Especially in seismic-prone regions, the behaviour of buildings must be 
known beforehand to safeguard human life and minimize losses. Unfortunately, two devastating 
sequence earthquakes (Mw= 7.8 and Mw=7.7) hit Turkey and Syria on 6 February 2023 along 
the East Anatolian Fault. Due to the inability to take adequate measures on time and poor 
performance of structures, more than 50,000 casualties were reported and severe damage was 
inflicted. 

Following the occurrence of these two catastrophic earthquakes, attention has once again turned 
towards the expected earthquake in Istanbul. The expected earthquake in Istanbul is predicted to 
impact a significant portion of the Marmara region. Thus, this study considers both the building 
stock characteristics of the region and the expected seismic activity. 

Determining the earthquake performance of existing structures is one of the problems that directly 
affect human life in earthquake engineering. Various methods have been developed to determine 
the level of damage in existing structures, which can be classified into three groups: (a) seismic 
performance assessment methods described in the modern seismic codes (b) rapid assessment 
methods that score buildings according to structural characteristics (c) machine learning 
prediction models (Stojadinović et al., 2022; Ulku et al., 2022; Wu and Sarno, 2022; Salmi et al., 
2022; Mangalathu et al., 2020; Roeslin et al., 2020). The first method can estimate the seismic 
performance of individual buildings, which are mainly based on the Finite Element Method (FEM). 
Evaluating the buildings one by one with this method will minimize the loss that will occur after 
the disaster, but unfortunately, it is a very long and costly process to examine and perform 
performance analyses of many buildings with this method. The second method estimates 
earthquake damage to buildings by scoring the structural features that can be obtained by on-
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the-ground surveys of the buildings. This method provides a rougher prediction of structural 
performance compared to other methods. 

This study develops machine learning classification models for estimating building performance 
based on datasets of building properties and performance to reduce analysis time and improve 
accuracy, with a focus on the Marmara region. Building properties were compiled from various 
studies and representative structures were simulated. Performance analysis was conducted 
using the Openseespy framework (McKenna et al., 2010) and non-linear time history (NLTH) 
analyses with actual earthquake records. The selected seismic recordings are taken into account 
according to different intensity measures, for instance, peak ground velocity (PGV) and peak 
ground acceleration (PGA) of the building. As a result of the analysis, MIDR values were obtained 
as an Engineering Demand Parameter (EDP) to classify the damage state of the buildings.  

The dataset was obtained from properties of the modelled buildings and damage states of 
analyzed buildings in order to train classification algorithms. The best classification algorithm was 
selected by comparing evaluation metrics of the machine learning models. 

Preparation of the Dataset 

Similar to deriving fragility and vulnerability models, data can be gathered to train machine 
learning algorithms for predicting earthquake damage using two approaches: (1) observing 
damage in the field after earthquakes, and (2) using analytical models to predict consequences. 
Both methods have strengths and weaknesses (Baker et al., 2021). The former method, the 
empirical approach, is directly validated by observational evidence but requires careful data 
collection. Buildings at each damage level must be inspected equally to obtain an unbiased 
estimate of the damage state that a building would experience given a particular level of ground 
motion. Otherwise, the observed dataset is going to be imbalanced. The imbalanced dataset can 
be handled in several ways, such as under-sampling or over-sampling methods (Kaur et al., 2020; 
Ulku et al., 2022). The latter one, the analytical approach, can also overcome the issue of 
imbalanced dataset, which is the main weakness of the empirical approach. However, the 
analytical approach requires that the analytical consequence predictions accurately represent 
reality (Baker et al., 2021). In this study, the analytical approach is preferred to generate a reliable 
and balanced dataset for developing a machine learning-based damage prediction model. The 
dataset is prepared from simulations of NLTH analyses of representative buildings to mimic 
reality. 

Determination of Building Characteristics 

The aim of generating a comprehensive dataset is to include most of the building characteristics 
in the Marmara region. The characteristics of representative buildings were obtained by 
conducting a literature survey of the building stock in the Marmara region and Istanbul (Bal et al. 
2007, Azak et al. 2014, DEZIM, 2020). 

The scope of this study is limited because considering all the structural features would be time-
consuming. Figure 1 illustrates the joint probability distribution condition on the number of storeys 
and the construction year of reinforced concrete buildings in Istanbul, according to DEZIM (2020).  

 

 

Figure 1: Joint probability condition on number of storey and construction year of reinforced 
concrete frame buildings in Istanbul (DEZIM, 2020) 

As can be seen, in Istanbul, the largest city of the Marmara region, most of the reinforced concrete 
structures are low-rise (1 to 4 floors) and medium-rise (5 to 8 floors) buildings built between 1980 
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and 2000. For this study, to cover the majority of the buildings in the Marmara region, 3 and 5 
storey buildings constructed between 1980 and 2000, respectively, were chosen for the 
examination of low-rise and mid-rise buildings. All the building characteristics, references of these 
parameters, and number of variations are listed in Table 1. 

Modeling of Structures 

The simulations of the structures were implemented by modeling two-dimensional (2D) finite 
element models in the OpenSeesPy framework. For simplicity, all buildings and column sections 
were assumed to a square. The middle axis of the buildings was modeled to determine the 
damage state under actual seismic loadings with NLTH analysis. 

To ensure consistency in the mass of the structures, loads were imposed according to the 
dimensions of each structure. The loads on partition interior and exterior walls, assumed to be 
2.5 kN/m3, were imposed on the beams as distributed loads. The slabs were assumed to be 
reinforced concrete with a density of 25 kN/m3 and a thickness of 15 cm. Both the superimposed 
dead loads and live loads were assumed to be 2 kN/m2. 

The structures were modelled as reinforced concrete moment-resisting 2D bare frame systems. 
Figure 2 is embedded to visualize the model with a representative building. Figure 2(a) shows the 
plan of the 2-span building, with the considered axis of the 2D frame and the loading tributary 
areas indicated. Figure 2(b) illustrates an example of the 2-storey building model scheme. 

 
Structural 
Characteristics 

References Parameters Number of 
Variation 

Number of Storey DEZIM (2020) 3 and 5 2 

Storey Height Bal et. al. (2007) 2.6, 2.8, and 3 m 3 

Commercial Use of 
Ground Floor 

Bal et. al. (2007) and 
Azak et. al. (2014) 

‘Yes’ or ‘No’ 
If ‘Yes’, Ground Floor 
Height = 3.5 m. 

2 

Number of Span Bal et. al. (2007) and 
Azak et. al. (2014) 

3 and 4 2 

Span Length Azak et. al. (2014) 2.5, 3, and 4 m 3 

Column Dimensions (For 
the simplicity, columns 
are assumed as square.) 

ABYYHY-1975, Bal et. al. 
(2007) and Azak et. al. 
(2014) 

3 storey: 25, 30, 35 cm 
5 storey: 30, 35, 40 cm 

3 

Beam Width Bal et. al. (2007) 25 cm 1 

Beam Depth Bal et. al. (2007) 60 cm 1 

Concrete Compressive 
Strength 

Bal et. al. (2007) 5, 12, 20, 28, and 35 MPa 5 

Steel Yield Strength Bal et. al. (2007) 370 MPa 1 

Reinforcement Ratio for 
Column 

ABYYHY-1975 (Minimum 
Requirement) 

0.01 1 

Reinforcement Ratio for 
Beam 

ABYYHY-1975 (Minimum 
Requirement) 

0.004 1 

Soil Condition (VS30)  1130, 560, 270 cm/s 3 

Total Number of Variation (Number of different buildings in this study) 3240 

Table 1: Representative building characteristics, number of variation and total number of 
buildings 

In OpenSeesPy, beam-column connections were assumed to be rigid, and columns are fixed at 
the base level in the FE models. The non-linear behavior of the structure was ensured by 
modeling all elements with “nonlinearBeamColumn” object. Distributed plasticity is provided by 
utilizing “RCSection2d” object which is an encapsulated fiber representation of a rectangular 
reinforced concrete section. Material properties of fiber section were defined by the Steel01 
material for steel presence and Concrete04 for the concrete fibers from the OpenSeesPy 
framework. The mean value of the yield strength of S220 steel has been found approximately 370 
MPa in Turkey (Akyuz et. al. 1999). For this reason, steel strength was adopted as 370 MPa 
instead of the nominal yield strength. Five different concrete strength between 5 and 35 are 
assumed to represent reality because of wide variation in concrete strength. Even “RCSection2d” 
object allows to model unconfined and confined concrete fibers, core and cover regions of column 
fibers are modeled as unconfined because of column stirrups of pre-code buildings were not 
folded properly and placed sparsely. 
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(a) (b) 

Figure 2: Representative model as 2-storey and 2-span. (a) Plan view, considered axis (A-A) for 
2D frame, and considered loading tributary areas; (b) the 2D frame scheme from OpenSeesPy 

Verification with SAP2000 

A linear-elastic modeling and analysis procedure was followed in SAP2000 (Computers and 
Structures, Inc., 2000) and used for verification of the model created using OpenSeesPy. The 
fundamental vibration periods and modal participating mass ratios resulting from free vibration 
analyses of the finite element models of the building in SAP2000 and OpenSeesPy were found 
consistent. In Table 2, vibration periods and participating mass ratios are compared for the 3-
storey buildings which both have same characteristics. 

 

Number of 
Mode 

Period 
(OpenSeesPy) 

Period (SAP2000) 
Participating 
Mass Ratios 
(OpenSeesPy) 

Participating 
Mass Ratios 
(SAP2000) 

1 0.4361 0.4194 0.900 (UX) 0.905 (UX) 

2 0.1516 0.1479 0.386 (RY) 0.381 (RY) 

3 0.1013 0.1005 0.014 (UX) 0.013 (UX) 

4 0.0416 0.0413 0.708 (UZ) 0.729 (UZ) 

5 0.0355 0.0339 0.312 (RY) 0.433 (RY) 

Table 2: Linear model comparison of SAP2000 and OpenSeesPy 

Selection of Ground Motion Records 

Istanbul has been a very hazardous area in terms of not having experienced catastrophic 
earthquakes for over 200 years. After the 1999 earthquakes happened in Duzce province, many 
researchers drew attention to the problem of earthquakes bigger than 7 in Istanbul (Parsons et 
al. 2000; Parsons et al. 2004; Murru et al. 2016; Hubert-Ferrari et al. 2000). Since not only Istanbul 
has hosted many people but also the province is very important in terms of having many risky 
buildings, precautions should be taken in advance. Therefore, this paper focuses on Istanbul and 
the practices of the buildings in which most people dwell. We generated 3240 reinforced concrete 
moment-resisting 2D bare frame systems with various shapes and materials. Then we performed 
NLTH analyses under the selected ground motions to calculate the engineering demand 
parameter, and this parameter led us to the damage state of a building. Thus, ground motion 
selection is one of the challenges of this paper.  

A new ground motion database is generated by combining recent catastrophic earthquakes that 
happened in Turkey (AFAD) with the CyberShake database (Baker et al., 2021). The new 
database allows us to pick up known worldwide ground motions from various stations, as well as 
earthquakes that occurred in Turkey. At the same time, we categorized the first vibration period 
of the buildings into ten groups (Table 3) to avoid the burden of the calculations because we 
assumed that there would be no considerable difference between the insignificant changes in the 
period of the buildings while selecting ground motion. Ground motions should be appropriate for 
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seismological conditions for the area and match with conditional mean spectrum to find optimal 
list of ground motion records.  

 
First Vibration 
Period Class 

Period Boundries 
Center of Period Intervals 

(Considered Period) 
Number of 
Buildings 

1 0.19 – 0.28 0.24 210 

2 0.28 – 0.37 0.33 567 

3 0.37 – 0.46 0.41 765 

4 0.46 – 0.54 0.50 702 

5 0.54 – 0.63 0.59 483 

6 0.63 – 0.72 0.67 270 

7 0.72 – 0.80 0.76 141 

8 0.80 – 0.89 0.85 63 

9 0.89 – 0.98 0.94 27 

10 0.98 – 1.07 1.02 12 

Table 3: List of period classes for ground motion selections 

For the sake of simplicity, this paper focuses on a single rupture that was obtained from Murru et 
al. (2016). The authors proposed three probability models for single and multi-segment 
earthquakes, based on recurrence distributions. In this study, we used the median value (50th 
percentile) of magnitude, which is 7.56, assuming that the West Marmara, Central Marmara, and 
Cinarcik segments rupture together. These segments are characterized by a right-lateral strike-
slip mechanism. We assumed that the buildings are located 10 km away from the rupture 
projection. Additionally, this paper takes into account the variability of soil conditions by 
considering three different values of VS30: 1130, 560, and 270. Based on these pieces of 
information, 11 ground motion records and scale factors are selected by utilizing Baker and Lee's 
(2018) algorithm, for each VS30 value that matches the target distribution, which is conditioned on 
the first vibration period class. As an example, selected ground motions, scale factor, and intensity 
measures (PGA and PGV) of records are shown in Table 4, for free vibration period class 3 and 
270 m/s time-averaged shear-wave velocity over the top 30 meters of the subsurface (VS30). 
Moreover, the response spectra of selected ground motions are visualized in Figure 3. 

 
Selected Earthquake SF1 PGA (g) PGV (cm/s) 

Golcuk Earthquake 1999 (Mw = 7.8) 1.18 0.38 63 

Pazarcik Earthquake 2023 (Mw = 7.7) 0.91 0.60 170 

Pazarcik Earthquake 2023 (Mw = 7.7) 0.65 0.51 87 

Duzce Earthquake 1999 (Mw = 7.2) 1.30 1.06 86 

Pazarcik Earthquake 2023 (Mw = 7.7) 1.01 0.61 114 

San Jacinto 1899 (Mw = 7.15) 1.01 0.75 96 

San Jacinto 1 (Mw = 7.25) 3.90 2.30 479 

Simi-Santa Rosa 1 (Mw = 6.65) 2.29 0.66 126 

San Andreas 1 (Mw = 8.05) 4.99 0.65 79 

San Andreas 1 (Mw = 7.95) 1.55 0.69 96 

San Andreas 1 (Mw = 7.85) 4.46 0.76 168 

Table 4: An example of selected ground motions, scale factors and intensity measures for 
period class 3 (VS30 = 270 m/s) 

Structural Analyses 

The NLTH analyses are performed to obtain an artificial dataset for machine learning algorithms. 
At the beginning, eleven earthquake records are used for non-linear analysis for 3240 various 
buildings. MIDR values are retrieved from 35640 completed analyses for classifying the 
performance of buildings as damage state. The results of the analyses, which is the target value 
of the dataset, were not distributed equally along the determined damage states. For instance, 
more than 20 thousand analyses (approximately 57% of the dataset) were performed as collapse 
damage states (Figure 4, light blue). This consequence was interpreted as the rupture scenario 
produces high ground motion intensity measures. To overcome the issue of imbalanced dataset, 
two different scale factors are used in terms of varying intensity measures. The first scale factor 
comes from the Baker and Lee's (2018) algorithm itself, and the second one comes from the 
Equation 1: 
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 𝑆𝐹2 =  𝑆𝐹1 ×
𝐼𝐷𝑅

𝑀𝑒𝑎𝑛𝑀𝐼𝐷𝑅

 (1) 

 
where SF1 and SF2 represent the first and the second scale factors, respectively. IDR denotes 
the inter-story drift ratio corresponding to the collapse limit (Table 5), and MeanMIDR indicates the 
mean MIDR obtained from NLTH analysis while using the first scale factor. IDR is 0.01, and 
MeanMIDR is 0.046, which is pretty higher than collapse limit. As a result, the second scale factor 
is calculated by reducing the first scale factor by multiplying with 0.22. 

 

  

(a) (b) 

Figure 3: Response spectra of selected ground motions (a) AFAD database (b) CyberShake 
database [Figures were plotted by using Baker and Lee’s (2018) MATLAB Algorithm] 

 
 

Damage State Inter-story Drift Ratio (%) 

No Damage  0 – 0.1 

Slight Damage 0.1 – 0.2 

Moderate Damage 0.2 – 0.5 

Extensive Damage 0.5 – 1.0 

Collapse >1.0 

Table 5: Inter-story drift ratio (%) boundries (Ghobarah, 2004) 

After calculating SF2, we performed NLTH again by multiplying records with this scale factor. In 
the end, 71280 analyses are performed to provide a balanced dataset for training machine 
learning classification algorithms (Figure 4). 

 

 

Figure 4: NLTH analysis results as damage states for SF1 and SF2 (in thousand) 
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Application of machine learning algorithms 

Machine learning is a broad field that includes various types of training system, and the choice of 
algorithm type depends on the model's purpose and the available dataset (Alpaydin, 2014). In 
this study, the objective of the machine learning model is to predict the building damage state 
based on the input data [building and seismic characteristics (Table 6)]. We developed two 
prediction models to represent seismic characteristics using two different intensity measures, 
PGV and PGA. Specifically, this study focuses on classification-related machine learning 
algorithms, including k-nearest neighbors, support vector machines (SVMs), decision trees, and 
random forests. 

 
Data Label Data Type Data - 1 Data - 2 … Data - 71280 

Number of Storey Numerical 3 3 … 5 

Number of Span Numerical 3 3 … 4 

Span Length (m) Numerical 2.5 2.5 … 4 

Storey Height (m) Numerical 2.6 2.6 … 3 

Column Area (m2) Numerical 0.0625 0.0625 … 0.16 

Concrete Strength (MPa) Numerical 5 5 … 35 

First Storey - Commercial Use Categorical Yes Yes … No 

PGA (g) Numerical 0.361 0.472 … 0.176 

PGV (cm/s) Numerical 17.668 44.784 … 43.298 

Damage State Categorical Collapse Extensive … Slight 

Table 6: Preview of the dataset 

Pre-processing techniques were applied to ensure optimal performance. Normalization is a 
common best practice in data pre-processing, as it can improve the performance and 
interpretability of machine learning models. In this study, normalizing numerical data and 
converting categorical data into numerical values are involved as pre-processing techniques.  

In order to evaluate the effectiveness of machine learning techniques in predicting damage states, 
the entire dataset is divided into two subsets: a training set and a testing set. The training set is 
used to construct the predictive model, while the testing set is utilized to evaluate the performance 
of the model. For this study, 80% of the data is allocated to the training set, and the remaining 
data is allocated to the testing set.  

Furthermore, we split the training set into 10 cross-validation sets using the Stratified K-Folds 
method. Additionally, the machine learning algorithms used in this study have many 
hyperparameters, so we tuned them to find the best solution for the given dataset. For instance, 
in the KNN algorithm, we tuned the number of neighbors, weights (the weight of data in each 
neighborhood), and the distance metric (Euclidean or Manhattan) between neighbors. 

Results and Conclusion 

Each algorithm was evaluated based on performance metrics such as precision, recall, accuracy, 
and F1 score. The Random Forest algorithm outperformed the other algorithms in every 
performance metric for both intensity measures (Table 7). The Random Forest algorithm 
produced remarkably favorable outcomes with the machine learning model, exhibiting a 
proportional prediction accuracy of more than 90% across the administered tests. 

 

Classification Algorithm IM Precision Recall Accuracy F1 Score 

Decision Tree (DT) 
PGV 0.90 0.90 0.90 0.89 

PGA 0.89 0.90 0.90 0.89 

Support Vector Machine (SVM) 
PGV 0.59 0.57 0.61 0.57 

PGA 0.70 0.69 0.70 0.70 

Random Forest (RF) 
PGV 0.92 0.92 0.92 0.92 

PGA 0.92 0.92 0.92 0.92 

K-Nearest Neighbor (KNN) 
PGV 0.46 0.45 0.49 0.45 

PGA 0.58 0.58 0.59 0.58 

Table 7: Evaluation metrics of machine learning algorithms 



SECED 2023 Conference ATICI et al. 

8 

Interpretation of the confusion matrix will give detailed information about the result of the machine 
learning algorithms. Table 8 and Table 9 shows the confusion matrixes for models trained by 
using datasets with different intensity measures. 

 
 Predicted Class 

Total Recall 
No Dam. Slight  Moderate  Extensive  Collapse 

A
c
tu

a
l 
C

la
s
s
 No Dam. 1137 70 1 0 0 1208 0.94 

Slight  74 1961 125 0 0 2160 0.91 

Moderate  0 145 3440 115 4 3704 0.93 

Extensive 0 0 146 2568 222 2936 0.87 

Collapse 0 0 3 167 4078 4248 0.96 

Total 1211 2176 3715 2850 4304 
Accuracy: 0.92 

Precision 0.94 0.90 0.93 0.90 0.95 

Table 8: Confusion matrix of random forest algorithm, dataset with PGV 

 
 Predicted Class 

Total Recall 
No Dam. Slight  Moderate  Extensive  Collapse 

A
c
tu

a
l 
C

la
s
s
 No Dam. 1137 70 1 0 0 1208 0.94 

Slight  67 1973 119 1 0 2160 0.91 

Moderate  0 140 3436 121 7 3704 0.93 

Extensive 0 3 158 2597 178 2938 0.88 

Collapse 0 2 5 188 4053 4248 0.95 

Total 1204 2188 3719 2907 4238 
Accuracy: 0.93 

Precision 0.94 0.90 0.92 0.89 0.96 

Table 9: Confusion matrix of random forest algorithm, dataset with PGA 

The present study demonstrates the applicability of a machine learning-based model for rapid 
damage prediction. Such models, developed using the data sets created by realistic three-
dimensional structural analyses and post-disaster reconnaissance data, can accelerate the taking 
of necessary precautions by learning the performance of the existing structures. Furthermore, the 
resulting fragility functions derived from these models can facilitate more accurate loss 
calculations. 
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